
Energy levels of classical interacting fields in a finite domain in 1 + 1 dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 2081

(http://iopscience.iop.org/0305-4470/33/10/310)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.33 (2000) 2081–2096. Printed in the UK PII: S0305-4470(00)07970-1

Energy levels of classical interacting fields in a finite domain in
1 + 1 dimensions

J A Espich́an Carrillo† and A Maia Jr‡
† Instituto de F́ısica ‘Gleb Wathagin’, UNICAMP 13.081-970, Campinas, SP, Brazil
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Abstract. We study the behaviour of bound energy levels for the case of two classical interacting
fieldsφ andχ in a finite domain (box) in 1+1 dimensions upon which we impose Dirichlet boundary
conditions. The total Lagrangian contains aλ4φ

4 self-interaction and an interaction term given by
gφ2χ2. We calculate its energy eigenfunctions and its corresponding eigenvalues and study their
dependence on the size of the box(L)as well as on the free parameters of the Lagrangian: mass ratio
β = M2

χ /M
2
φ , and interaction coupling constantsλ andg. We show that for some configurations

of the above parameters, there exist critical sizes of the box for which instability points of the field
χ appear.

1. Introduction

It is well known that quantum physical systems can significantly alter their behaviour when
placed inside cavities. A modern paradigm is the famous Casimir effect [1] and more recently
the so-called cavity quantum electrodynamics [2].

From a mathematical point of view, part of these studies can be translated into the general
setting of differential equations for quantum fields, upon which are imposed suitable boundary
conditions, in order to know their wavefunctions and energy eigenvalues. The above-mentioned
subjects are essentially of a quantum nature. Nevertheless, it is well known that, for several
applications, quantum fields can be thought of as classical fields upon which are added quantum
corrections [3]. In this sense, although at a classical level, we can get a lot of information about
the system under study.

In this paper we study the influence of boundary conditions on bound energy levels of a
classical system of fields described by Lagrangian density

L = 1

2
(∂µφ)

2 +
1

2
M2
φφ

2 − λ
4
φ4 +

1

2
(∂µχ)

2 +
1

2
M2
χχ

2 − gφ2χ2 (1)

whereλ, g are coupling constants.
Before we continue, we wish to make an important observation. In (1), the Lagrangian

density of the fieldχ , i.e.L = 1
2(∂µχ)

2 + 1
2M

2
χχ

2, does not have a state of least energy since
its associated Hamiltonian is not positive definite. This, clearly, is due to the ‘wrong’ sign of
the mass term. One way to solve this would be to add a term of self-interaction for the fieldχ ,
as usually happens in theories with spontaneous symmetry breaking. Of course we could also
keep the original positive sign in the mass term. This will lead to different results from this
work, but the techniques used are the same. In this work, we chose to keep the positive sign
of the mass term and verify when the interaction term of the Lagrangian, given by−gφ2χ2,
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2082 J A E Carrillo and A Maia Jr

leads to a lower bound to the Hamiltonian density. We have found that the existence of a lower
bound depends also on the boundary conditions. Therefore, the theory studied here must be
understood as a toy model. (See the appendix for details.)

We consider only the simpler case of fieldsφ andχ inside a finite box (interval) in 1 + 1
dimensions. Of course, all discussion can be generalized to higher dimensions with a number
of new differential equations and boundary conditions related to the geometry of the box. A
quantum version of the theory, in a semiclassical approach, will be done elsewhere.

The equations of motion for the two fields are given by

−∂µ∂µχ +M2
χχ − 2gφ2χ = 0 (2)

−∂µ∂µφ +M2
φφ − λφ3 = 0. (3)

In (3) we have neglected the term 2gφχ2 which can be interpreted as the back-reaction
of field χ on the mass term ofφ. This can be achieved if we impose, for example, that
|χ | � Mφ/

√
2g. Of course other regimes can be studied from (3) by adopting different

approximations.
In a previous paper [4] we studied, in 1 + 1 dimensions, the case in which the fieldφ(x),

unlikeχ(x), is not influenced by finite boundary conditions of the box. Soφ(x) is the Kink
solution of (3) in (−∞,+∞) [5]. In this case we can think of theχ field as placed in the presence
of a fixed potentialφ2 and we showed that a level splitting appears (bifurcation point). This
could be interpreted, in a semiclassical version of the theory, asχ -particle creation induced by
squeezing the box below a critical size.

In this paper we take into account the same boundary conditions for both fieldsφ and
χ . This means that the potentialφ2 depends on the size of the box. Therefore, we study
the behaviour of the energy levels of theχ field by running the parametersL, β, λ, g, where
β = M2

χ/M
2
φ is the mass ratio andL is the box size. Of course, the box size is an external

parameter of the theory. We show below that classical instabilities appear for a critical size of
box.

A family of static solutions of the classsical equation of motion to the fieldφ(x) are given
by sn-type elliptic functions [6]

φc(x) = ± Mφ

√
2c√

λ
√

1 +
√

1− 2c
sn

(
Mφx√

2

√
1 +
√

1− 2c, l

)
(4)

wherec is a parameter belonging to interval(0, 1
2] and

l = 1

−1 + 1+
√

1−2c
c

. (5)

Clearly,l ∈ (0, 1]. There also exists another family of solutions: see [6] for details. The
above one was chosen because we can impose Dirichlet boundary conditions (DBCs) on their
solutions. In generalφc is a function ofx−x0, but we can putx0 = 0 without loss of generality.

So, the equation of motion for the fieldχ can be written as(
−∂µ∂µ +M2

χ −
4gM2

φc

λ(1 +
√

1− 2c)
sn2

(
Mφx√

2

√
1 +
√

1− 2c, l

))
χ = 0.

Since we are interested in stationary solutions we can writeχ(x, t) = e−iωtψ(x), where
ω are energy eigenvalues. With this, the previous equation can be written in the form

d2

dx2
ψ(x) +

(
M2
χ + ω2 − 4gM2

φc

λ(1 +
√

1− 2c)
sn2

(
Mφx√

2

√
1 +
√

1− 2c, l

))
ψ(x) = 0. (6)
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In the next section we calculate the energy eigenvalues of (6) as well as study their
dependence on the parameters of the theory, namelyg, λ, β = M2

χ/M
2
φ , l. For brevity we use

ω ≡ ω(λ, g, β; l), where the semicolon indicates thatl is an external parameter of the theory.
In section 5 we study the level shifts induced by changing the box size and interpret the results.
In section 6 we conclude with some comments and list some topics for future work.

2. Lamé equation and boundary conditions

In this section we study the bound levels of two interacting fields which are confined inside a
box (an interval in our case) of lengthL. We impose DBCs for both fieldsφ andχ (orψ).

In [6] the authors showed that imposing DBCs on the fieldφ, given by (4), confined to a
box of sizeL, must satisfy the condition

MφL = 4
√

1 + lK(l) (7)

where 4K(l) is a period of the Jacobi elliptic functions sn(u, l) [7]. To get the above equation
we impose DBCs atx1 = −L

2 andx2 = L
2 . Observe that since the solutions (4) are continuous

odd functions, the pointx0 = 0 is a root of all of them, and does not provide any information.
So, it is sufficient to impose DBCs just, say, atx2 = L

2 . Moreover, since we take the same
boundary conditions for both fields (the same kind of confinement), this implies that the
samel = l(L) obtained from the above equation must be substituted in theχ -field boundary
conditions, in order to find its energy eigenvalues.

Of course, different boundary conditions can be imposed independently on the fieldsφ and
χ . For example, in [4] we studied the extreme case where the box boundaries are transparent
for the fieldφ, whileχ satisfies DBCs.

We start by making the changes of variables,

α = Mφx√
2

√
1 +
√

1− 2c and ω2 = (E − 2)

2
M2
φ

in equation (6) which can then be rewritten as

d2

dα2
ψ(α) =

(
8gc

λ(1 +
√

1− 2c)2
sn2(α, l)− 2

(M2
χ −M2

φ)

M2
φ

√
1 +
√

1− 2c
− E

(1 +
√

1− 2c)

)
ψ(α).

(8)

On the other hand, from (5) we have

c = 2l

(l + 1)2
. (9)

Thus (8) reduces to

d2

dα2
ψ(α) =

(
4
g

λ
lsn2(α, l)− (M

2
χ −M2

φ)

M2
φ

(1 + l)− E(1 + l)

2

)
ψ(α). (10)

This differential equation has some important special properties. Sinceg andλare positive
we can write, without loss of generality,

4
g

λ
≡ n(n + 1) (11)

wheren is a positive real number.
So, the above equation can be rewritten as

d2

dα2
ψ(α) =

(
n(n + 1)lsn2(α, l)− (β − 1)(1 + l)− E(1 + l)

2

)
ψ(α) (12)
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where we have defined the adimensional mass ratio parameter asβ ≡ M2
χ/M

2
φ .

This is a generalized Laḿe differential equation. In the literature the general form of this
type of equation is given by [8]†

d2

dα2
3(α) = (n(n + 1)ksn2(α, k) +C)3(α) (13)

wheren is a positive real number,k is the parameter of the Jacobian elliptic function sn, and
C is an arbitrary constant.

It is well known that the Laḿe differential equation and more generally the Hill equation
presents stability as well as instability bands in the plane of parameters(k, C) in the notation
of equation (13). This stability is related to the spatial dependence of the solution. On the
other hand, we are interested in stability for the time dependence. Using Floquet’s theory the
solution can be written as

χ(x, t) = e−iωteirxp(x)

wherep(x) is a periodic function. In our approach below (section 3) we show that even in
the case for eigenvalues of the Lamé equation describing stable solutions for the spatial part
(r2 > 0), we can have unstable solutions in time, that isω2 < 0.

Comparing (12) with (13), we obtain

C = −(β − 1)(1 + l)− E(1 + l)

2
and k = l.

For the purpose we have in mind we only consider here the case wheren is a positive
integer. The case withn real, although more interesting, leads to eigenvalues which are
difficult to calculate exactly and a full numerical treatment is necessary in order to obtain the
eigenvalues we are interested in. Forn an integer equation (12) or (13) is simply called the
Lamé differential equation and can be solved analytically. So, our results can also be used as
a test for the numerical solutions of more realistic cases which do not have exact solutions.

Forn a positive integer the general solution of (12) is given by

ψ(α) = AEmn (α) +BFmn (α)

whereA andB are arbitrary constants andEmn (α) andFmn (α) are Laḿe functions of the first
and second kind, respectively [8]. The parameterm ranges from{−n,−n + 1, . . . , n− 1, n}.
Moreover, whenn is a positive integer, if one of the solutions of the Lamé equation is a
polynomial, then the second solution must be an infinite series. The polynomial solution is
given byEmn (α) and the series solution byFmn (α) [8].

In this paper, we restrict our study to polynomial solutions. In other words, we search for
solutions whose growth at infinity is of polynomial type. So our solutions are given only by

ψ(α) = AEmn (α). (14)

Since we are interested only in eigenvalues, in the following we drop the arbitrary constant
from the eigenfunctions (14).

Below we show the first eigenfunctions(n = 1, 2, 3) of (12) which are given by the Laḿe
functions. The case forn continuous will not considered in this work. Observe that the case
n = 0, in principle, could be considered. But from (11),n = 0 impliesg = 0 which in
turn leads to a Hamiltonian which is not positive definite. Therefore the casen = 0 will be
discarded. Of course, from (11) there is a minimal strength for the coupling constant, namely
g = λ

2 (for n = 1). On the other hand, strong coupling(n → ∞) leads to a new and more
complicated Laḿe functions. In this work we analyse only for the case smalln: that is, the
coupling constant has moderate strength. Yet even for these few cases, we will see that a rich
phenomenology for the bound energy levels emerges.

† In our notation we take the parameter of the Jacobian elliptic function ask (with k > 0) instead ofk2 as in [8].
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3. Eigenfunctions and eigenvalues of theψ field

Using the results from [8], forEmn (α), as well as the form defined for the eigenvaluesH ,
namely

H = 1

l
C

we list below the eigenfunctionsψ(α) (14) and their eigenvalues for (12).

Case I: n = 1 (g = λ
2)

(1) ψ1(x, l) = sn

(
Mφx√
1 + l

, l

)
H−1

1 (l) = −1− 1

l
. (15)

(2) ψ2(x, l) =
√

sn2

(
Mφx√
1 + l

, l

)
− 1 H 0

1 (l) = −
1

l
. (16)

(3) ψ3(x, l) =

√√√√√ lsn2

(
Mφx√
1 + l

, l

)
− 1

l
H 1

1 (l) = −1. (17)

Case II: n = 2 (g = 3
2λ)

(1) ψ1(x, l) = sn

(
Mφx√
1 + l

, l

)√
sn2

(
Mφx√
1 + l

, l

)
− 1

H−1
2 (l) = −1

l
(4 + l). (18)

(2) ψ2(x, l) = sn

(
Mφx√
1 + l

, l

)√√√√√ lsn2

(
Mφx√
1 + l

, l

)
− 1

l

H 0
2 (l) = −

1

l
(4l + 1). (19)

(3) ψ3(x, l) =
√

sn2

(
Mφx√
1 + l

, l

)
− 1

√√√√√ lsn2

(
Mφx√
1 + l

, l

)
− 1

l

H 1
2 (l) = −

1

l
(l + 1). (20)

(4) ψ4(x, l) = sn2

(
Mφx√
1 + l

, l

)
− 1

1 + l +
√
l2 − l + 1

H 2
2 (l) = −

2

l
(1 + l +

√
l2 − l + 1). (21)

(5) ψ5(x, l) = sn2

(
Mφx√
1 + l

, l

)
− 1

1 + l −√l2 − l + 1

H−2
2 (l) = −2

l
(1 + l −

√
l2 − l + 1). (22)
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Case III: n = 3 (g = 3λ)

(1) ψ1(x, l) =
√

sn2

(
Mφx√
1 + l

, l

)
− 1

(
sn2

(
Mφx√
1 + l

, l

)
+

1

−√l2 − l + 4− l − 2

)
H−2

3 = −
2l + 5

l
− 2

l

√
l2 − l + 4. (23)

(2) ψ2(x, l) =

√√√√√ lsn2

(
Mφx√
1 + l

, l

)
− 1

l

(
sn2

(
Mφx√
1 + l

, l

)
+

1

−√4l2 − l + 1− 2l − 1

)
H−1

3 = −
5l + 2

l
− 2

l

√
4l2 − l + 1. (24)

(3) ψ3(x, l) = sn

(
Mφx√
1 + l

, l

)√
sn2

(
Mφx√
1 + l

, l

)
− 1

√√√√√ lsn2

(
Mφx√
1 + l

, l

)
− 1

l

H 0
3 (l) = −

4

l
(1 + l). (25)

(4) ψ4(x, l) = sn

(
Mφx√
1 + l

, l

)(
sn2

(
Mφx√
1 + l

, l

)
+

3√
4(l − 1)2 + l − 2l − 2

)

H 1
3 = −

5

l
(l + 1) +

2

l

√
4(l − 1)2 + l. (26)

(5) ψ5(x, l) =
√

sn2

(
Mφx√
1 + l

, l

)
− 1

(
sn2

(
Mφx√
1 + l

, l

)
+

1√
l2 − l + 4− l − 2

)
H 2

3 = −
2l + 5

l
+

2

l

√
l2 − l + 4. (27)

(6) ψ6(x, l) =

√√√√√ lsn2

(
Mφx√
1 + l

, l

)
− 1

l

(
sn2

(
Mφx√
1 + l

, l

)
+

1√
4l2 − l + 1− 2l − 1

)
H 3

3 = −
5l + 2

l
+

2

l

√
4l2 − l + 1. (28)

(7) ψ7(x, l) = sn

(
Mφx√
1 + l

, l

)(
sn2

(
Mφx√
1 + l

, l

)
+

3

−
√

4(l − 1)2 + l − 2l − 2

)

H−3
3 = −

5

l
(l + 1)− 2

l

√
4(l − 1)2 + l. (29)

In all cases we substituted with the help of (9),α = Mφx/
√

1 + l. For l ∈ (0, 1] all the above
eigenvaluesHm

n are negative.

4. Eigenvalues for DBCs

In this section we obtain the energy eigenvaluesω2 by imposing DBCs atx = ±L
2 on the

solutionsψs above. Thus we obtain relations asl ≡ l(L). We have made use of the relation
ω2 = (E−2)

2 M2
φ .

An important observation is now in order. In [6] a minimum value was determined for the
relationMφL, whenl→ 0, namely, 2π . Using (7) (the same as (34) below), this result can be
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checked easily. Likewise, observe from (9) that ifl→ 0 thenc→ 0 and then by (4) we have
thatφ → 0. So, below the minimum valueMφL = 2π the fieldφ vanishes. Therefore, in
our calculation the only consistent eigenvalues are those that satisfy the conditionMφL > 2π ,
that is, those for which the fieldφ does not vanish. This argument will be used in several cases
below. We now turn to the calculation of the energy eigenvalues for the eigenfunctionsψs .

Case I: n = 1 (g = λ
2)

(1) ω2
1(β) = (1− β)M2

φ. (30)

Observe that in this caseω2
1 does not depend onl.

(2) ω2
2(l, β) =

(
1

1 + l
− β

)
M2
φ

wherel satisfies

MφL = 2
√

1 + lK(l).

Note that thel = l(L) solution of this equation is not the same as that from (7). As
previously mentioned, we are interested in obtaining energy eigenvalues of fieldχ with the
samel = l(L) used for fieldφ. Thusω2

2 must be discarded for the casen = 1.

(3) ω2
3(l, β) =

(
l

1 + l
− β

)
M2
φ (31)

wherel satisfies

sn2

(
MφL

2
√

1 + l
, l

)
= 1

l
. (32)

Since sn2(MφL/2
√
l + 1, l) 6 1, l should satisfyl > 1. Sincel ∈ (0, 1], only l = 1

(L = ∞) is a solution of (32).

Case II: n = 2 (g = 3
2λ)

(1) ω2
1(l, β) =

(
4 + l

1 + l
− β

)
M2
φ (33)

wherel satisfies

MφL = 4
√

1 + lK(l) (34)

or

MφL = 2
√

1 + lK(l). (35)

Note that in this case only (34) satisfies the condition that the samel = l(L)must be used
for both fieldsφ andχ . According to this, solutions of equations like (35) must be discarded.
Soω2

1 is an allowed eigenvalue withl given by (34).

(2) ω2
2(l, β) =

(
4l + 1

1 + l
− β

)
M2
φ (36)

wherel satisfies (34) and also

sn2

(
MφL

2
√
l + 1

, l

)
= 1

l
. (37)
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Here, as in the case of (32), onlyl = 1 (L = ∞) is a solution. Soω2
2 is also an allowed

eigenvalue withl given by (34).

(3) ω2
3(β) = (1− β)M2

φ (38)

observe thatω2
3 is independent ofl and therefore ofL.

(4) ω2
4(l, β) =

(
(2− β)(1 + l) + 2

√
l2 − l + 1

1 + l

)
M2
φ (39)

wherel satisfies

sn2

(
MφL

2
√
l + 1

, l

)
= 1

1 + l +
√
l2 − l + 1

. (40)

A numerical analysis shows that forl ∈ (0, 1] we obtain, from the above equation, that the
values ofMφL belongs to the interval(1.57, 1.86). So, the eigenvalueω2

4 is not a consistent
solution since for this caseMφL < 2π .

(5) ω2
5(l, β) =

(
(2− β)(1 + l)− 2

√
l2 − l + 1

1 + l

)
M2
φ (41)

wherel satisfies

sn2

(
MφL

2
√
l + 1

, l

)
= 1

1 + l −√l2 − l + 1
. (42)

This relation only has the solutionl = 1 (L = ∞).

Case III: n = 3 (g = 3λ)

(1) ω2
1(l, β) =

(
2l + 5 + 2

√
l2 − l + 4

1 + l
− β

)
M2
φ. (43)

Since we have a product in (23) we either get thatl satisfies (35), which should be discarded,
or thatl satisfies

sn2

(
MφL

2
√
l + 1

, l

)
= 1

l + 2 +
√
l2 − l + 4

. (44)

A numerical analysis shows that forl ∈ (0, 1] MφL belongs to the interval(1.04, 1.36)
and thenMφL < 2π . Therefore the eigenvalueω2

6 is not a consistent solution.

(2) ω2
2(l, β) =

(
5l + 2 + 2

√
4l2 − l + 1

1 + l
− β

)
M2
φ (45)

with l satisfying

sn2

(
MφL

2
√
l + 1

, l

)
= 1

l
or sn2

(
MφL

2
√
l + 1

, l

)
= 1

2l + 1 +
√

4l2 − l + 1
. (46)

Observe that the first equation is satisfied only forl = 1 (L = ∞), and for the second
equation it is possible to show numerically thatMφL belongs to the interval(1.36, 1.57). Thus
this equation will not be considered sinceMφL < 2π .

(3) ω2
3(l, β) = (4− β)M2

φ. (47)

In this caseω2
3 is independent ofl and therefore ofL.

(4) ω2
4(l, β) =

(
(5− β)(l + 1)− 2

√
4(l − 1)2 + l

1 + l

)
M2
φ (48)
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with l satisfying (34) or

sn2

(
MφL

2
√
l + 1

, l

)
= 3

2l + 2−
√

4(l − 1)2 + l
. (49)

Again, in this case onlyl = 1 (L = ∞) is a solution of (49). Soω2
4 is an allowed

eigenvalue withl satisfying (34).

(5) ω2
5(l, β) =

(
2l + 5− 2

√
l2 − l + 4

1 + l
− β

)
M2
φ (50)

with l satisfying an equation similar to (35) or

sn2

(
MφL

2
√
l + 1

, l

)
= 1

l + 2−√l2 − l + 4
. (51)

As in the previous case, onlyl = 1 (L = ∞) is a solution of (51).

(6) ω2
6(l, β) =

(
5l + 2− 2

√
4l2 − l + 1

1 + l
− β

)
M2
φ (52)

with l satisfying

sn2

(
MφL

2
√
l + 1

, l

)
= 1

l
or sn2

(
MφL

2
√
l + 1

, l

)
= 1

2l + 1−√4l2 − l + 1
. (53)

These equations are also satisfied only forl = 1 (L = ∞).

(7) ω2
7(l, β) =

(
(5− β)(l + 1) + 2

√
4(l − 1)2 + l

1 + l

)
M2
φ (54)

with l satisfying (34) or

sn2

(
MφL

2
√
l + 1

, l

)
= 3

2l + 2 +
√

4(l − 1)2 + l
. (55)

By numerical analysis it is possible to show thatMφL belongs to the interval(2.04, 2.92).
Thus these solutions must be discarded sinceMφL < 2π . Soω2

7 is an allowed eigenvalue with
l satisfying (34).

The above study shows that only the eigenvaluesω2
1 andω2

2 are allowed forn = 2,ω2
4 and

ω2
7 for n = 3. Also there is a trivial one, namelyω2

1 for n = 1, which coincides withω2
3 for

n = 2.
In the next section, we study the behaviour of the energy eigenvaluesω2, for a fixedβ,

running the external parameter of the theoryl ≡ l(L) continuously.

5. Level shifts induced by changing box size and points of instability

In this section we study the behaviour of level shifts with changing box size. The casen = 1,
although possessing an allowed level, namelyω2

1, does not depend onL in a non-trivial way.
Therefore, we do not consider it interesting to our study.

For the casesn = 2 and 3 we have non-trivial results. In all cases below we fixed different
values for the mass parameterβ. Also, we demand classical stability for the eigenfunctions
ψi (i = 1, 2, 3). Classical stability means that the energy eigenvaluesω2

i are non-negative [3],
so that the amplitude of fieldχ does not grow exponentially in time.
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(A) Casen = 2 (g = 3
2λ). Considering only the energy eigenvaluesω2

i > 0 in (33), (36)
and (38) we obtain the following relations:

(a) β 6 4+l
1+l for ω2

1

(b) β 6 4l+1
1+l for ω2

2

(c) β 6 1 for ω2
3.

Sincel ∈ (0, 1], from these relations we get the allowed intervals forβ. They are

(a) Forω1, β ∈ [ 5
2, 4).

(b) Forω2, β ∈ (1, 5
2].

(c) Forω3, β ∈ [0, 1].

Below we study the behaviour of the energy eigenvaluesω2
i under the running of the

external parameterL. In order to do this we fix some particular values of the mass ratio
parameterβ.

(1) β = 0 (figure 1).
Using (33), (36) and (38) we obtain

(a) ω2
1 = ( 4+l

1+l )M
2
φ

(b) ω2
2 = ( 4l+1

1+l )M
2
φ

(c) ω2
3 = M2

φ satisfied for allL.

From figure 1 we can see that for a large box(l = 1 orL = ∞), ω1 andω2 coincide at
ω2 = 5

2M
2
φ .

(2) β = 1 (figure 2).
As before, from (33), (36) and (38) we obtain

(a) ω2
1 = ( 3

1+l )M
2
φ

(b) ω2
2 = ( 3l

1+l )M
2
φ

(c) ω2
3 = 0 satisfied for allL.

It is interesting to note that (see figure 2) forL = ∞, ω1 andω2 converge to
√

3
2Mφ , i.e.

for a large box(L = ∞) the excited state of Dashen–Hasslacher–Neveu (DHN) [5] is
obtained. Likewise, the ground state of the DHN model is also obtained, i.e.ω3 = 0. This
can be proved directly from (6) by takingl = 1. Nevertheless, (6), or its equivalent (12),
has an additional freedom by varying the parameterβ.
Figure 2 shows that forl → 0 (MφL→ 2π ) [6], the energy eigenvaluesω2+ andω2− go
toω = 0 for a critical size of the box, namelyL = 2π

Mφ
. This could suggest that this is an

instability point of the fieldχ , induced by changing the external parameterL (box size).
This is not the case here, becausel→ 0 implies by (4) and (5) thatφ = 0 and we are left
only with a free Lagrangian of theχ field and where no critical point exists.

(3) β = 2 (figure 3).
In this case, from (33), (36), (38) we have

(a) ω2
1 = ( 2−l

1+l )M
2
φ

(b) ω2
2 = ( 2l−1

1+l )M
2
φ

(c) ω2
3 = −M2

φ satisfied for allL.

Observe thatω2
3 is negative, so the classical configuration associated to this eigenvalue is

unstable [3] andω2+ turns out to be the new ground state. In the intervall ∈ (0, 1
2) ω

2
2

is negative. Thus its classical configuration is unstable in this interval. Also observe that
now the instability point occurs for a bigger size (not the minimal one) of the box. Here
one can ask whether this kind of instability could lead to a ‘condensate’ in a quantum
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ω1+

ω2+

ω3+

ω3−

ω2−

ω1−

Figure 1. The energy eigenvalues forβ = 0.

regime. A full proof of this, of course, requires a second quantization for the fieldχ , at
least, in a semiclassical approach. Also, it is well known that inclusion of a nonlinear
term for it in the total Lagrangian could lead to quantum condensates [9]. These lines are
not pursued here, since our aim is only to show the behaviour energy levels for fields (in
the classical limit) placed inside boxes, for a very simple geometry like an interval. For
l = 1 (MφL = ∞), ω1 andω2 coincide at the valueω/Mφ ∼ 0.7. (See figure 3.)

(4) β = 3 (figure 4).
In this case, using (33), (36) and (38) we have
(a) ω2

1 = ( 1−2l
1+l )M

2
φ

(b) ω2
2 = ( l−2

1+l )M
2
φ

(c) ω2
3 = −2M2

φ satisfied for allL.

As in previous cases,ω2
3 is negative. Also, forl ∈ (0, 1], ω2

2 < 0. So the classical
configurations forω2 andω3 are unstable. Likewise in the intervall ∈ ( 1

2, 1] we have that
ω2

1 < 0, so its classical configuration is also unstable in this interval.
Figure 4 shows that by increasing the mass parameterβ we get an instability point closer
and closer to the critical size of the boxL = 2π/Mφ .
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M
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ω2-

Figure 2. The energy eigenvalues forβ = 1.

(5) β = 4.
Using (33), (36) and (38) we obtain

(a) ω2
1 = −( 3l

1+l )M
2
φ

(b) ω2
2 = − 3

1+lM
2
φ

(c) ω2
3 = −3M2

φ .

We can see from these relations that all the energy eigenvalues are negative (forl 6= 0)
and therefore their classical configurations will be unstable.

It is interesting to note that forβ ∈ [2, 3] theω2 disappears forβ → 5
2 and for5

2 < β < 3
only ω1 survives and it is easy to see from figure 4 that its behaviour is the inverse of that of
ω2.

Therefore forn = 2, a changing of the box size induces the appearence of an instability
point for the energy eigenvaluesω1 orω2 for β ∈ (1, 4).

(B) Casen = 3 (g = 3λ). For the casen = 3 the results are pretty much the same for its seven
bound energy levels. However, in this case, only the eigenfunctions given by equations (26)
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Figure 3. The energy eigenvalues forβ = 2.

and (29) with respective energy eigenvalues given by (48) and (54) satisfy condition (7). The
only great difference is that there is no instability point for the mass ratio parameterβ ∈ (4, 6).
In fact, the instability points only exists forβ ∈ (1, 4] or β ∈ [6, 9).

Another interesting point, as shown in [6], is that imposing periodic boundary conditions
at x = ±L

2 on the fieldφ, the same relation (7) is obtained and therefore all results from the
Dirichlet case remain valid. Also, imposing periodic boundary conditions atx = ±L

2 on the
solutionsψs , it is possible to show that for the casen = 2, the eigenfunctions given by (19)
and (20) lead to the same relation forl ≡ l(L) given by (7). In the same way, for the case
n = 3, the eigenfunctions given by (26) and (29) also lead to (7). Therefore all results of the
Dirichlet case remain valid for periodic boundary conditions.

6. Conclusions

In this paper we have studied the energy eigenvaluesω2 of a classical scalar fieldχ in
1 + 1 dimensions interacting with another classical scalar fieldφ through the Lagrangian
Lint = gφ2χ2, in a finite domain (box of sizeL). The energy eigenvalues depend on four
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Figure 4. The energy eigenvalues forβ = 3.

parameters:β (mass ratio parameter), coupling constantsλ andg, andl (which is connected
with the box sizeL). We fixed the coupling constantg by (11) for an arbitraryλ and we studied
only the casesn = 1, 2, 3, which correspond to a moderate strength interaction constantg

related toλ. For the more general case ofn real a full numerical treatment is perhaps necessary.
Next, we discussed the behaviour of the energy eigenvaluesω2 by fixing the parameterβ and
changing the external parameter of the theoryl ≡ l(L), namely the size of the box.

For the casen = 2 (g = λ
2), we concluded that the instability points for the energy

eigenvaluesω1 or ω2 occur for β ∈ (1, 4). These instability points are obtained as a
consequence of squeezing the box. Also, in figures 2–4 it is shown that increasing the mass
ratioβ givesω1 an instability point closer and closer to the minimal size of the boxL = 2π

Mφ

while that ofω2 is further and further from this value.
For the casen = 3 (g = 3λ), we have seven bound energy levels. Only two of them

satisfy the DBC which in turn implies equation (7). Their behaviours are pretty much the same
asn = 2, but instability points only exist forβ ∈ (1, 4] or β ∈ [6, 9). Forβ in interval(4, 6)
we get only stable solutions. For periodic boundary conditions all results obtained with DBCs
remain unchangeable. Of course, other boundary conditions can be imposed leading to new
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behaviours of the energy levels under box squeezing.
Several interesting extensions and approaches can be made from this work. As stressed in

the introduction, fields placed in cavities lead to new and sometimes unexpected behaviours of
some systems. Although our approach is for classical fields it suggests that a quantization of
the system studied above could lead to formation of a kind of ‘condensate’ just by squeezing
the system in a box. This would require a semiclassical approach and will be done elsewhere.
A more interesting case would be the inclusion of nonlinearities for the classical fieldχ , which
leads to well known condensates for unbound domains [9], but now in finite domains. We
think a full numerical treatment is also needed in this case.

Generalization of the above results ton spatial dimensions leads to more complex
equations, as well as an enormous (infinite to be sure) variety of geometries for the shape of
the box. Nevertheless, these kind of calculations for spherical symmetry could be interesting
in order to study, for example, the bound state behaviour of matter fields in compact stars and
in reheating theory and inflationary cosmology.
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Appendix. Boundary conditions and the positivity of the Hamiltonian

Consider the potential for the fieldχ , given by

V (χ) = − 1
2M

2
χχ

2 + gφ2χ2

and we have

V ′(χ) = −M2
χχ + 2gφ2χ = 0⇒ χ = 0 (critical point).

The second derivative of the potentialV (χ) is given by

V ′′(χ) = −M2
χ + 2gφ2.

In order to makeV ′′(χ) > 0 we must impose that

φ2 >
M2
χ

2g
. (56)

Thus the above condition should lead to the existence of a state of least energy (vacuum)
of the fieldχ .

This is not the case for our example, because the condition (56) is not valid for fieldφ

near the boundariesx = ±L
2 sinceφ satisfies DBCs on them. This could lead to the total

Hamiltonian densityH not being positive definite. By writingH as

H = 1

2
(χ̇2 + φ̇2) +

1

2

(
dφ

dx

)2

+
1

2

(
dχ

dx

)2

+ λφ4 +
1

2
M2
φφ

2 +

(
gφ2 − 1

2
M2
χ

)
χ2

we can easily see that the last term, between brackets, is not positive definite.
This work shows that unstable solutions appear for these kind of theories. This is because

our example should be considered as a toy model in 1 + 1 dimensions. Nevertheless, it is
possible that different boundary conditions could lead to unstable solutions without violating
the positiveness of the Hamiltonian.
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On the other hand, it is easy to see that if we change the sign of the mass term of the
fieldχ in the Lagrangian, then we obtain only stable solutions. A detailed study of these more
realistic solutions, including those for three spatial dimensions, will be done elsewhere using
the method of investigation outlined in this paper.
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